Friends of the Richelieu. A river. A passion.



"Tout cedit pays est fort uny, remply de forests, vignes & noyers. Aucuns Chrestiens n'estoient encores parvenus jusques en cedit lieu, que nous, qui eusmes assez de peine à monter le riviere à la rame. " Samuel de Champlain


"All this region is very level and full of forests, vines and butternut trees. No Christian has ever visited this land and we had all the misery of the world trying to paddle the river upstream." Samuel de Champlain

Thursday, January 27, 2011

Gaz de schiste - Le rapport Tyndall (2)

Photo: Tyndall - COOP report

Les chercheurs au Tyndall Centre à l'université de Manchester, en Angleterre, ont enquêté sur les impacts du gaz de schiste sur l'environnement et les changements climatiques. L'exploitation du gaz de schiste, ou de shale, est bien lancée aux États-Unis et devra commencer bientôt en Grande-Bretagne.

Voici la 2e partie d'une traduction libre du rapport préliminaire du Tyndall Centre for Climate Change Research. Le texte original est ici: http://www.tyndall.ac.uk/shalegasreport avec un lien pour télécharger le rapport en format pdf de 87 pages.

Le titre du rapport est:

"Shale gas: a provisionnal assessment of climate change and environmental impacts - A research report by The Tyndall Center, University of Manchester with Sustainable Change Co-operative, Report commissioned by The Co-operative. January 2011"

1.2 Les objectifs de l'étude

Comme faisant partie de son travail en cours sur les sources d'énergies non conventionnelles, la Co-operative a mandaté cette courte étude pour fournir une révision et une évaluation des risques et bienfaits du développement des gaz de schiste afin d'éclairci sa prise de position en cette matière. Elle se penche sur l'information en général et aussi en particulier pour la Grande-Bretagne à l'intérieur de l'Union Européenne où il y a de l'intérêt jusqu'à date très mitigé sur l'avenir de la ressource en gaz de provenance des réserves dans le shale et de l'exploration. L'objectif d'ensemble est de tirer de l'information disponible, surtout des É.-U. où l'exploitation du gaz de schiste prend de l'ampleur, pour prendre connaissance des risques potentiels et des avantages du gaz de schiste et réfléchir sur le développement des réserves du shale qui pourraient être trouvées en G.-B.

Ainsi, les questions qui seront évaluées dans cette étude incluent:

- l'empreinte en carbone possible, dont les émissions du cycle de vie, du gaz de schiste à comparer avec les autres sources primaires d'énergie comme le charbon et le gaz naturel conventionnel;

- l'ampleur des ressources connues et la contribution potentielle des émissions de CO2 dans l'atmosphère venant de l'extraction et la combustion des réserves des gaz de schiste exploitables.

- les risques environnementaux clés et les impacts liés avec l'exploitation des gaz de schiste dont: la consommation d'eau, la contamination des sols et des eaux de surface par les chimiques de la fracturation hydraulique et les autres contaminants, ainsi que toutes les autres questions qui pourraient survenir d'une perspective soutenable pour la G.-B.

1.3 Structure du rapport

La section 2 du rapport décrira les procédés de la production du gaz de schiste et se penche sur le développement et la production des réserves aux É.-U.. Cette section discutera également sur les activités autour des gaz de schiste en G.-B.

La section 3 traitera des effets sur les GES de l'exploitation du gaz de schiste.

La section 4 revoit et évalue les impacts environnementaux et les risques qui viennent avec l'exploitation du gaz de schiste ainsi que les impacts cumulatifs et les questions de transport des grandes quantités de gaz de schiste dans la G.-B.

La section 5 résume et tire les conclusions en ce qui a trait aux risques, aux coûts et les avantages du développement de la filière des gaz de schiste en G.-B. en particulier.

2. L'exploitation du gaz de schiste et les réserves

2.1 Vue d'ensemble

Les schistes gaziers sont des formations géologique de shale riche en matières organiques, une roche sédimentaire qui s'est formé de dépôts de boue, de sédiments, de glaise et de matières organiques. Auparavant, ils étaient considérés comme des rocs relativement imperméables servant pour sceller le gaz qui migre vers d'autres dépôts comme du grès perméable et des réservoirs de carbone qui sont la cible de la production du gaz commercial conventionnel. Avec les avancées des technologies de forage et de stimulation de puits (paufinées par la production du gaz conventionnel), par contre, l'extraction du gaz non conventionnel de ces formations de shale moins perméables peuvent être réalisées.

Le développement et l'application combinée du forage horizontal avec la fracturation hydraulique ont permis l'épanouissement du potentiel de production de gaz de ces formations de shale plus serrées et moins perméables, et comme mentionné plus haut, le développement le plus rapide et le plus important du gaz de schiste et des procédés s'y rattachant se sont faits aux É.-U.. Là-bas, l'exploitation du gaz de schiste a augmenté la production de 7,6 milliards de mètres cubes en 1990 (ou 1,4% des réserves totales en gaz aux É.-U.) à environ 93 milliards de mètres cubes (soit 14,3% des réserves totales en gaz aux É.-U.) en 2009.

En se basant sur l'expérience américaine, cette section donnera des détails sur les procédés modernes impliqués dans la production du gaz de schiste et une vue d'ensemble des réserves estimées et les niveaux de production historiques et futures aux É.-U. Il y aura aussi des informations sur les réserves connues et le développement de la ressource en G.-B et dans l'Union Européenne, où l'exploitation du gaz de schiste est à ses tous débuts aux stages exploratoires.

2.2 Les procédés de production des gaz de schiste

2.2.1 Introduction aux procédés du gaz de schiste

Le forage horizontal et la fracturation hydraulique sont les 2 technologies qui ensembles ont le potentiel de permettre l'extraction du gaz de schiste des formations les plus serrées. La fracturation hydraulique, ou fracking, est une technique de stimulation de puits qui consiste à pomper un fluide et un agent proppant (matière de soutient) comme du sable dans le puits à de grandes pressions pour provoquer des fractures dans le roc qui contien des hydrocarbures. Ces fractures commencent dans le puits d'injection et s'étendent jusqu'à quelues centaines de mètres dans le roc réservoir. Les "proppants" maintiennent les fractures ouvertes pour permettre aux hydrocarbures de s'infiltrer dans le trou du puits. Entre 15% et 80% des fluides injectés sont récupérés à la surface.

Le forage directionnel et horizontal permet au puits de pénétrer le long du filon du roc qui contient les hydrocarbures qui peut être moins de 90 mètres d'épaisseur dans la plupart des régions principales de shale aux É.-U. Cela maximise la région du roc qui une fois fracturée, est en contact avec le trou de forage et donc maximise la production du puits en écoulement et en volume de gaz qui peut être extrait du puits.

Excepté pour quelques outils spécialisés, le forage horizontal se fait avec de l'équipement très similaire et avec des technologies très similaires au forage vertical, et en effet, les stages de forage au début sont presque identiques aux puits verticaux typiques des puits de gaz conventionnels. À part de la section verticale de forage et la tête de puits finale, par contre, les procédés de développement et d'extraction sont différentes entre la production du gaz conventionnel et du gaz non conventionnel. Bien que certains puits de gaz conventionnel ont été stimulés avec les méthodes de fracturation hydraulique, la fracturation hydraulique et le forage horizontal sont plus qu'absolument nécessaires pour les puits de gaz de schiste pour qu'ils soit assez productifs et payants.

Les exigences du forage horizontal et de la fracturation hydraulique font que la distribution des puits à la surface au-dessus des formations cibles est différente, et les procédés de l'exploitation se sont adaptés au fil du temps pour les rendre plus efficaces. À partir des premières expériences dans le gaz de schiste au début du 20e siècle, le procédé moderne s'est développé pour aboutir à un modèle type qui regroupe plusieurs puits sur des sites à puits multiples (multi-well pads), des forages horizontaux qui partent de chaque puits et des stages multiples de fracturation avec du "slickwater".

Table 2.1 Les principaux jalons technologiques du gaz de schiste

Au début des années 1990, on exploite du gaz naturel des puits dans le shale. Les forages verticaux sont fracturés hydrauliquement avec de la mousse.

1983: Premier puits foré dans le Barnett Shale au Texas
1980-1990: Usage combiné de fluides de fracturation en gels dans des puits verticaux
1991: Premier puits horizontal foré dans le Barnett Shale
1996: Début de l'usage de fluides de fracturtion appelés "slickwater"
1998: Fracturation avec du "slickwater" dans des puits déjà fracturés avec des gels
2002: Fracturation à plusieurs stages avec du "slickwater" dans des puits horizontaux
2003: Première fraturation hydraulique dans le Marcellus Shale
2007: Sites avec plusieurs puits et regroupement de sites avec plusieurs puits (multi-well pads et cluster drilling)

Le forage horizontal à partir de sites comportant plusieurs forages est maintenant la méthode habituellement la plus employée dans les exploitations actuelles dans le Marcellus Shale par exemple, dans la partie nord de la Pennsylvanie. Ici, un "well pad" est construit typiquement dans le centre de ce qui deviendra un réseau de forages horizontaux. On rapporte que jusqu'à 16 forages, mais plus souvent de 6 à 8 forages sont percés en séquence parallèlement en rangées à partir de chaque site, chaque puits espacés typiquement de 5 à 8 mètres de distance. Chaque forage horizontal peut être typiquement de 1 à 1,5 km de longueur latérale, mais pourrait l'être davantage.

Réseaux multiples des sites à puits multiples

Puisque le réseau des puits forés de chaque site ne peut que rejoindre une région limitée de la formation cible, l'exploitation du gaz de schiste nécessite aussi un réseau de sites de puits dispersés au-dessus de la formation cible. Pour ce qui est de la disposition des sites de puits, l'état de New York mentionne un maximum d'espacement de 9 sites de forage par mille carré (2,6km2). Ceci équivaut à 3,5 sites de forage par km2 environ. En G.-B., Composite energy prévoit que 1 à 1,5 sites par km2 devrait être suffisant en G.-B.

Principales différences entre les procédés d'exploitation du gaz conventionnel et du gaz de schiste non conventionnel

Vu les différences dans les procédés d'exploitation entre le gaz de schiste non conventionnel et le gaz conventionnel des réservoirs perméables, il y a également des différences dans l'intensité de l'effort, de l'usage de la ressource et de génération de déchêts.

Également, bien que le gaz qui provient du shale est généralement identique au gaz conventionnel, il y a néanmoins des différences importantes. La suite de la section 2.2 fournit une description détaillé des procédés impliqués dans l'exploitation des puits de gaz de schiste, dont la construction du site de forage, le forage, la fracturation hydraulique, la production et éventuellement la fermeture du puits et sa mise hors service. L'information détaille la production et le développement du site de forage jusqu'à sa mise hors service.

2.2.2 Avant l'exploitation - initiation et phase de forage

La construction du site de forage (well pad)

Le forage horizontal à partir de sites à plusieurs forages (multi-well pads) est maintenant chose courante comme méthode, avec 6 à 8 puits forés successivement d'un seul site (pad). Chaque site exige une surface suffisante pour accommoder le stockage des fluides et l'équipement nécessaire pour les opérations de fracturation à gros volume ainsi que l'équipement plus lourd du forage horizontal. Selon l'état de New York, les dimensions moyennes d'un site à plusieurs forages sont habituellement de 1,5 à 2 hectares pendant les phases de forage et de fracturation, avec des sites de plus de 2 hectares parfois. La surface moyenne d'un puits en exploitation (s'il y a de la réhabilitation) est souvent de 0,4 à 1,2 hectares.

Le forage

La profondeur du forage vertical dépendra de la formation géologique cible et sa localisation, et typiquement, les puits seront forés verticalement au travers des couches de roc et des aquifères à une profondeur d'environ 150 mètres au-dessus du filon cible, pour qu'ensuite une tour de forage plus grosse pour le forage horizontale la remplace sur le site où de l'équipement différent est employé pour forer les portions verticales et horizontales, afin de partir à un angle la section horizontale du trou de forage appelé "kicking off".

La section verticale de chaque puits, dont la section qui est forée au travers de n'importe quel aquifère d'eau douce, sera typiquement forée avec soit de l'air comprimé ou une boue d'eau douce comme fluide de forage. Contrairement aux sections verticales, le forage horizontal utilise de l'équipement avec des boues de forage. Pour de tels équipements, les boues de forage sont nécessaires pour:

- activer et refroidir le moteur "downhole" employé pour le forage directionnel;
- l'usage d'outils de navigation qui doivent avoir de la boue pour transmettre les données des détecteurs;
- stabiliser le foret horizontal pendant le forage;
- retirer efficacement les rognures de forage du forage horizontal.

Certains opérateurs peuvent aussi forer le puits horizontal avec de l'air en employant de l'équipement spécial pour contrôler les fluides et les gaz qui pénètrent dans le trou de forage.

Pour ce qui est des déblais de forage (les rognures de roc), un seul puits foré verticalement d'une profondeur de 2 km et latéralement de 1,2 km génèrerait environ 140 mètres cubes de déblais de forage. Un site de forage avec 6 puits va donc générer environ 830 mètres cubes de déblais. Pour des fins de comparaison, un puits conventionnel foré à la même profondeur (2 km) génèrerait environ 85 mètres cubes.

La suite de la traduction libre de cette étude portera sur les coffrages, les ingrédients dans les fluides de fracturation et les demandes en eau dans une entrée de blog prochainement.Photo: Marcellus-shale.us

No comments:

Post a Comment